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Purpose

• Discuss the limitations on resolution limit in 

the scanning electron microscope

• Describe methods for overcoming resolution 

limits in the scanning electron microscope
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Outline

• Electron optics

• Electron beam / sample interaction

• STEM-in-SEM approach

• Forward scattered imaging approach

• Image processing

• He ion microscopy
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Background

• The SEM is an incredibly versatile tool for high 

resolution imaging due to simply sample preparation, 

ease of use, and high depth of field.

• Device features below 0.1 micron size are pushing 

the resolution limit of SEM.

• TEMs and AFMs are now replacing SEMs for fine line 

metrology.

• Modern SEM have 1 nm spot size, but 1 nm SEM 

resolution is seldom seen on “real” samples.
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Maximum useful magnification

e- beam

Sample TV Monitor

Diameter d
Mag = M

Pixel size = 0.2 mm

xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxxxxxx

Beam diameter d when translated to the monitor 

has diameter d*M
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Maximum useful magnification

Image in sharp focus

xxxxxxxxxxxxxx

d * M < 0.2 mm

Image not in sharp focus

xxxxxxxxxxxxxx

d * M > 0.2 mm

d * M d * M

Mmax = 0.2 mm / d

For d = 5 nm, the maximum useful mag is 40,000x

For d = 1 nm, the maximum useful mag is 200,000x !!!
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Factors affection SEM resolution

• Electron beam spot size

• Contrast and signal intensity

• Beam/sample interaction
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Brightness

Brightness = b =
current

area x solid angle

=
4 i

p2 d2 a2

b = brightness

i = beam current

d = beam diameter

a = convergence angle

p = Pi ~ 3.14

a

d
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Maximum Brightness

bmax =
Jc e Vo

p kb T

bmax= maximum brightness

Jc   = current density at cathode (Amps/cm2)

e     = electron charge = 1.6 x 10-19 Coulomb

Vo = beam accelerating voltage (volts)

kb = Boltzman’s constant (8.6x10-5 eV/K)

T     = Cathode temperature (K)

p = Pi ~ 3.14
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SEM Cathode Comparison
Schottky Field Cold Field 

Source:    Tungsten LaB6 Emission Emission

Vacuum: 10-5 10-7 10-8 10-10

(torr)

Brightness:    10+5 10+6 10+8 10+8

(A/cm2.sr)

Resolution:   10 nm 5 nm 1 nm          1 nm

Lifetime 40-100 200-1000   >1000 >1000
(hours)
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Gaussian spot size

dg =
4 i

b p2 a2

dg = Gaussian spot size, i.e. final spot 

size in the absence of lens aberrations

[ ] 
1/2
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Final probe size

dp = dg
2 + ds

2 + dd
2 + dc

2

dp = final probe size

ds = spherical aberration = Cs a3 /2

dd = diffraction aberration = 0.61 l / a

dc = chromatic aberration = Cc a DE/Eo 

Where: Cs ~ 2cm Cc ~ 2 cm

l = electron wavelength ~ 0.2 to 1.2 nm

[ ] 
1/2
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Probe size vs. convergence angle for 

electron optical aberrations
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LEO 1550 FE “Gemini” Column Specs

WD 2

U [kV]

0,1 1 10

d min [nm]

0

1

2

3

4

5

6

Resolution vs. beam voltage for LEO 1550 FE

d = 1.0 nm 

@ 20 kV

d = 2.3 nm

@ 1 kV



16 November 2009 ISTFA 2009 15

Visibility and the Rose Criterion

Distance

S
ig

n
a
l 

S

N = noise

DS = signal variation

Rose Criterion: for a feature to be visible, DS > 5N

Random noise N ~ n ½    where n = mean number of counts

Contrast C = DS/S

Then the Rose criterion requires n > (5/C)2-

--
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Threshold Equation

Where:

iB = beam current

e = collection efficiency (# electrons collected 

per incident electron)

C = contrast

tf = frame time (for 1,000 x 1,000 frame with 106 pixels)

1 Amp = 6.24 x 1018 electrons/sec

Typical high-resolution imaging slow scan:

iB = 30 pA = 1.9 x 108 electrons/sec

e = 0.25

tf = 30 seconds

Then: C > 0.13

iB > (4 x 10-12 / e C2 tf) Amps 



16 November 2009 ISTFA 2009 17

Threshold Equation
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After Goldstein Fig. 4.41
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Visibility vs. resolution and contrast
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Electron Beam-Sample 

Interaction Products

e- beam

secondary

electrons

backscattered

electrons
e-

e-

X-rays
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Beam 

energy 

(keV)

Spot 

size (nm)

Range in 

Al (mm)

1 2.4 0.028

3.5 1.5 0.22

5 1.3 0.41

10 1.1 1.32

20 1.0 4.19

30 1.0 8.24

e- beam

secondary

electrons

Back-

scattered

electrons

e-e-

e-

Range

Range calculated from the

Kanaya-Okayama formula

Electron beam energy vs. range & spot size
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Ultra-high Resolution SEM

Requirements for ultra-high resolution SEM:

(1) An electron beam finely focused to a 

small spot at the sample surface.

(2) Sufficient electron beam current to 

produce good image contrast.

(3) An imaging signal which is well localized

to the electron beam impact site.

(1) and (2) generally require high electron beam 

voltage, which causes problems obtaining (3).

e- beam

e-

e-

e-
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Gold-on-Carbon Resolution Sample

Carbon substrate

Gold Islands

A highly reflective pattern (gold islands) on a strongly 

absorbing substrate (carbon) allows very high 

resolution imaging at high beam voltage.

100 nm Mag = 500,000 x
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Typical Samples at high kV

Uncoated sample –

Poor image

0.1 mm Mag = 100,000 x

Coated sample –

Coating artifacts

Mag = 100,000 x0.1 mm
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Ultra-High resolution SEM

Part 1:

STEM-in-SEM
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STEM-in-SEM

Objective lens

e- beam

STEM

detector

Thin sample
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Principles of operation

Electrons pass through the thin sample and strike the gold 

reflectors, creating secondary electrons which are collected by 

the in-chamber secondary electron detector (SED). 

[per David Joy]

STEM-in-SEM
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Sample holder in operation

The STEM-in-SEM sample holder is placed in the 

SEM just like any other sample.
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STEM-in-SEM vs. TEM

Silver nanoparticles (aerosol process) on “holey carbon film”

SEM: 30 kV TEM: 300 kV
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Electron beam Penetration in Silicon

Electron 

beam 

energy 

(keV)

Electron 

penetration 

depth in silicon 

(microns)

5 0.47

10 1.49

15 2.93

20 4.73

25 6.87

30 9.31

At 100 keV the scattering length is much greater than 

100 nm, but at 30 keV the scattering length is 17 nm.



16 November 2009 ISTFA 2009 30

Monte-Carlo simulation of electron 

trajectories at 30 keV

Lateral scattering increases the electron beam spot size from 10 

Angstroms to 350 Angstroms, reducing resolution. 

The graphite collimator blocks the most highly scattered electrons, 

which improves resolution.
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Low magnification STEM-in-SEM image

100 mm Mag = 75x
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STEM-in-SEM vs. TEM images

100 nm Mag = 100,000x 100 nm Mag = 240,000x

TEMSTEM-in-SEM

Ti Barrier

Al line

W plug

Ti Barrier

and Plug Liner
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High magnification STEM-in-SEM

100 nm Mag = 216,000x

Ti Barrier

Ti Plug Liner

STEM-in-SEM
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STEM-in-SEM vs. TEM images

100 nm Mag = 250,000x

50 nm Mag = 500,000x

STEM-in-SEM TEM

Sidewall spacer

Poly Si

Resolution ~ 2 nm
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In-lens secondary image

200 nm Mag = 100,000x

SEM on thin sample

Using an “in-lens” detector, the image is little better 

than using ordinary SEM.

Objective lens

e- beam

Sample

In-lens

detector
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Dark field STEM-in-SEM imaging

100 nm Mag = 100,000x

When the area of interest is moved away from the collimator, 

only the most highly-scattered electrons are collected. This 

“dark-field image” emphasizes scattering contrast.

100 mm Mag = 75x
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Energy dispersive x-rays from 

bulk and thin films

Using a thin film sample greatly reduces the lateral area in 

which x-rays are generated.
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EDS Spectra of thin films

EDS spectrum of thin silicon EDS spectrum of interconnect

Al

O
Ti

Si

Si

5 KeV 5 KeV

EDS spectra at 30 KeV on thin films samples have very low 

Bremsstrahlung backgrounds.

Cu
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STEM-in-SEM X-ray maps

Mag = 75,000x

X-ray maps:

SEM image

STEM-in-SEM X-ray maps show approximately 10 nm lateral 

spatial resolution, compared to 100 nm or greater for standard 

SEM x-ray maps.

400 nm W L-a

Al K-a

Ti L-a
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STEM-in-SEM with a dedicated detector

Mag = 200,000 x150 nm

Bryan Tracy, ISTFA 2002
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STEM image @ 30kV with a dedicated STEM detector

P. Gnauck, et al., ISTFA 2003 Proceedings, p. 132.

In-situ STEM Imaging in a Dual-beam 

SEM/FIB system

200nm
Brightfield Darkfield

Defect
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Advantages of STEM-in-SEM over TEM

• Cheap and widely available

• Not limited by 3 mm sample size

• EDS at very high spatial resolution which is

not possible with many TEMs.
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Ultra-high resolution SEM

Part 2:

Forward scattered electron 

imaging in the SEM
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An old idea – low loss imaging

Electron Energy Spectrum
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Wells, 1971

Low loss electron imaging

Mag = 10,000 x2 mm
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Wells, 1989

Mag = 400 x50 mm

Secondary electron vs. low-loss electron imaging

Secondary electron image Low-loss electron image

Mature leaf blade abaxial surface showing cuticular ridges 

on bulliform cells between rows of epidermal hairs

Mag = 400 x50 mm
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Low loss electron imaging

Broers, 1974

Mag = 350,000 x25 nm

Sample

e-

V = 0
Scintillator
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Forward scattered electron imaging

Vanderlinde, 2003
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Forward scattered electron 

imaging

Vanderlinde, 2003

Front View Rear View
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Secondary electron vs. forward scattered electron imaging

0.1 mm Mag = 100,000 x

Uncoated poly-silicon

30 kV beam energy

0.1 mm Mag = 100,000 x

Secondary electron image Forward scattered image
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Forward scattered imaging with dynamic focus

100 nm Mag = 100,000x

Imaging using Dynamic Focus.

Uncoated sample imaged at 30 KV beam voltage.
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Forward scattered imaging – image correction

10 mm Mag = 850x

Photo-resist before (left) and after (right) image correction.

Uncoated sample imaged at 30 KV beam voltage.
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Forward scattered electron imaging

10 mm Mag = 1,000 x

Uncoated photo-resist (often charges in SEM)
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Forward scattered electron imaging

0.5 mm Mag = 40,000 x

Uncoated photo-resist (often charges in SEM)
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Forward scattered imaging – e-beam resist

50 nm Mag = 200,000x

E-beam resist (PMMA) lines 250 nm high by 50 nm wide.

Uncoated sample imaged at 30 kV beam voltage.

50 nm

250 nm
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Discussion

• Contrast is based on scattering of the high 

energy electrons toward the detector, similar to 

dark-field STEM.

• Collecting the low-loss electrons by capturing 

a small solid angle of the forward scattered 

beam produces excellent images.

• An energy filter is not required for high 

resolution imaging.
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Conclusions
• Forward scattered electron imaging is a 

practical technique for improved imaging in an 

unmodified SEM.

• Forward scattered electron imaging eliminates 

charging on uncoated insulators even at 30 KV.

• Forward scattered electron imaging is 

especially well suited for low atomic number 

materials.

• Dynamic focus and image correction can 

compensate for the high tilt angle.
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Ultra-High resolution SEM

Part 3:

Blind Deconvolution in the SEM
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Blind deconvolution of SEM images

• Deconvolves PSF blur from the image

• NOT the same as “sharpening” features found in 

common graphics programs

• Not previously done with SEM images

• Requires 16-bit TIFF images with S/N = 120:1 (10 

minute scans)

+

Point Source Point Spread 

Function (PSF)
Blurred Image
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Gold island sample- Before

20 nm Mag = 500,000X
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Gold island sample - After

20 nm Mag = 500,000X
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Sputter coating sample - Before

50 nm Mag = 200,000X



16 November 2009 ISTFA 2009 63

Sputter coating sample - After

50 nm Mag = 200,000X
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Ultra-High resolution SEM

Part 4:

Helium Ion Microscopy
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Beam of He+ ions used as a probe

Sub-nm spot size

Strong topographic contrast

http://www.smt.zeiss.com/nts

Helium Ion Microscopy
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Helium Ion Optical Column

Image courtesy Carl Zeiss Nano Technology Systems Division
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Helium Ion Source

Image courtesy Carl Zeiss Nano Technology Systems Division



16 November 2009 ISTFA 2009 68

Helium Ion Source

- High Brightness > 3x109 A/cm2-Sr

- Small virtual source size (sub-Angstrom?)

- Low energy spread (~ 0.5 eV) gives reduced 

chromatic aberration

- He ion has small de Broglie wavelength for 

reduced diffraction effects compared to SEM

Data courtesy Carl Zeiss Nano Technology Systems Division
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Helium Ion Source
Spherical 

Aberration

Chromatic 

Aberration

Diffraction 

Aberration

Image courtesy Carl Zeiss Nano Technology Systems Division



16 November 2009 ISTFA 2009 70

Interaction Volumes

Gallium FIB Standard SEM Helium FIB

30 keV Gallium in Si

1
0
0
 n

m

1 keV electrons in Si 30 keV Helium in Si

30 keV Gallium and 1 keV electrons have a large 

interaction volume at the surface. He ions are well 

collimated beyond the secondary electron escape depth.

Images courtesy Carl Zeiss Nano Technology Systems Division
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Helium Ion SE Imaging

He ion induced secondary 

electron image
Electron microscope 

secondary electron image

Strong material contrast

Images courtesy Carl Zeiss Nano Technology Systems Division
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Helium Ion SE Imaging

He ion induced secondary 

electron image

Electron microscope 

secondary electron image

High Resolution – aluminum post on silicon at ~150,000x

1 micron FOV

Images courtesy Carl Zeiss Nano Technology Systems Division
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Helium Ion SE Imaging

He ion induced secondary electron images

Crystallographic information
Long depth of field

(~ 5x better than SEM)

Images courtesy Carl Zeiss Nano Technology Systems Division
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He Secondary Ion Imaging

He ion induced secondary ion image

Image courtesy Carl Zeiss Nano Technology Systems Division
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He Secondary Ion Imaging

He ion induced secondary ion image

Image courtesy Carl Zeiss Nano Technology Systems Division
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He Secondary Ion Imaging

He ion induced secondary 

ion image
Electron microscope 

secondary electron image

Negligible edge effects compared to SEM

Images courtesy Carl Zeiss Nano Technology Systems Division
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He Ion Microscopy Summary

Small spot size ~ 0.25 nm

Small sample interaction volume

Image information:

- Topographic information

- Material information

- Voltage contrast information

- Crystallographic information

Long depth of field

Minimal charging artifacts

Transmission ion imaging

Data courtesy Carl Zeiss Nano Technology Systems Division
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